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\ ABSTRACT
‘~-;)This paper 18 the first one in the series of three which are
addressing in detail the properties of the three basic versions of the
finite element method in the one dimensional setting. The main emphasis
is placed on the analysis when the (exact) solution has singularity of
Sui alpha
x“-type. The first part analyzes the p-version, the second the h-version
and general h-p version and the final third part addresses the problems of
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1. INTRODUCTION

In general, the h-version of the Finite Element Method is the
standard version when the degree of elements is fixed and the convergence
is achieved by the refinement of “he mesh. The p-version fixes the mesh
and the convergence is obtained by the increase of the degree of
elements. The h-p version simultaneously refines the mesh and increases
the degree of elements. In recent years, the p and h—p versions of the
finite element method attracted large interest both in theory and
computational practice. The first commercial program PROBE based on the
p-version become available. This paper is the first in the series of
three which will analyze in detail the properties of the h, p and h-p
versions for solving the one dimensional problem, the solution of which
has singularity of x“-type. The first part analyzes the p-version, the
second the h-version and general h-p versions and the final third one
addresses the problem of the adaptive h-p version.

In this paper we will not discuss the two dimensional case; neverthe-
less the detailed results in one dimension are serving as guidelines to
the two dimensional theory. For the analyses of the p and h-p finite
element version for the two dimensional problem we refer to [l]. For the
computational implementation and engineering aspects of the p and h-p
versions we refer to ([2].

The p-version was studied theoretically first in [3]. The h~-p version
was addressed in [4], and for detailed analysis of the p-version in three
dimension we refer to [5] [6]. For additional theoretical aspect of the
p-version we refer also to [7]. The p-version {s in some sense related to

the theory of spectral method. For these results we refer especially to

(81 91 (10].
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In this paper we will consider the most simple model problem
(1.1) = f

u(0) = u(l) = 0

with the solution

(1.2) up(x) = (x=0)} - 1-6)% x - (-£){(1-x)

where
(x-£)* 1f x> ¢
(x-E): =
0 if x< E.

We will be interested in the accuracy of the finite element method
2

measured in the energy norm IulE = fé (u’)zdx. We have to assume that
a >1b to get finite energy of the solution. The energy norm is in our
case obviously equivalent to the Hl-norm of the standard Sobolev space
nl,

The xa-type singularity of the solution is an analogue of the singu-
larity of the solution of the two dimensional boundary value problems for
elliptic partial differential equation occuring when the domain has
corners. Solution of this type belongs to low order Sobolev spaces.
This, in general, leads to low rate of convergence of the finite element
method with quasiuniform meshes. On the other hand, taking into account
the special structure of u(x), one can achieve high (exponential) rate
of convergence by proper design of the mesh and degrees of elements.
Obviously, the results related to (1.1) can be generalized to the general
case of two point boundary value prodbleam.

For our model, the finite element method with C° elements gives exact

solution in the nodal points and the analysis of the error of the finite
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s
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element method reduces to the analysis of the best L,-approximation of
u” by plecewise polynomials.
Most of our results in this paper will provide both, the upper and

lower bounds of the error of the finite element solution. In what it

follows the following notation will be used. By A = B we mean that A

asymptotically equals B as some parameter tend to a certain limit. By

A » B we mean that A is equivalent to B, that is, there exists an

equivalency constant C > O (depending on some parameters to be

indicated) such that

CB < A < cls,

(A

The paper 1s organized as follows: In Sections 2-4 we study the prop-

erties of the Legendre expansion of the function (x—g)g. Section 5
addresses the Lengendre expansion of more general functions. Section 6
discusses the performance of the p-version, and Section 7 deals with

numerical computations.

q
2. THE LEGENDRE EXPANSION OF (x-&)g.
Let
. 1 a"
P (0 = 44 aP-nf
2 n! dx
be the Legendre polynomials which form an orthogonal basis of Lz[-l,ll
For the properties of Legendre polynomials see [11], [12], [13], [14].
We denote
(2.1) u(x) = (x=5).
Suppose that its Legendre expansion 1s
- . o
¥ - .
. (2.2) u, (x) ! a P (x)

n=0
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The following theorem gives the expression for the coefficients of the

expansion:
Theorem 1. Let, & < 1, then:

1) if £=-1, a> -1, then
(2.3a) %0 atl

- ala=1)eee(a=-nt+l) . 90
(2.3b) 22 T Tarl)(ard)e -+ (otatl) 20D 2

2) 1f -1 <E<1l, a > -1, then

ot
. 2041 -6y (atl,-a-1)
(2.4) a 2 (atl)(at2)+ s (atnFl) 'n (®)

(at1,-a-1) is the Jacobi polynomial

where P
n
n n
2.5 0V = — 4o ja-n™am™)
2 n!(1-x) (14x) dx

with y=a+1, v=-a-1.

3) if & < -1, then

- a(a-1)(a=2)es-(a-ntl) n-a 2
(2.6) a G5 @o™% %)
where
(2.7) r = —1 ©<r<1)

—erg-l

and on a(x) is the Gauss hypergeometric function




= F(n~a.-o- L ot 3.
(2.8) On’a(X) F(n~a,=a 73 ot 2,x)

- - -=- =) (- _1 - 1
n -+ e 1 at oo (== -
=] 4+ ) ( Q)(n @ 1) '(n atk- ) ( 2)( 2)“! ( - X

- 3yt Iyeen(nt 2+ k-
k=l (mt D) (m+ 2)eee(mt 5 + k-1) )

~at 4 1
() oM ) <

+k-1)

@ k
=1+ |
k=1l j=1

Proof. We have
2n+l 1
(2.9) a = = [ u (x)P (x)dx.
-15 n

In the case § = -1

1
20+l a
a > ! (1+t) Pn(t)dt | f

2n+l n

(n)
3 1 de.,

1
[ ar® 2 o)
-1 2 n!

Since a > -1, for k =1,2,...,n we have

t+tl

integration by parts yields

1
2nt+) n a n
a S -1)" a(a-1)ece(a-ntl) [ (14+£)%(e-1)" de
a 2n+1n! a

20+l (-1)*"aa-1)+ <« (a-ntl) 11 ey ar
s (D) (at2)ees (atm) L

ir - ' B ' - I
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2o+l a(a=l)eee(g=ntl) atn+l

2n+l (at+l)(at2)see (a+n+l) 2

and (2.3) follows.

For the case -1 < ¥ <1 we have

1
(2.10) a = égtl Iz (e=0)% p_(t)de.

For Re p >0 and 0 <y <1 one has

1
B T = _T@n!  (u,m),,
(2.11) IO (1-x) Pn(l-yx)dx 8] P, (1~y)

(see [14], p 833). Setting t =1 - (1-£)y we obtain from (2.10):

0
g, = B - amI® _(1-(1-0)y) [-(1-8) 1dy
1

- 5 (1-2)

1
21 a+l Jo (1-yy (e¥1)-1 P_(1-(1-E)y)dy

2n+l at+l I'(a+l)n!

- e - (H ,_a-l)
5 (1-8) P

I'(a+mt2) n (€)

2n+1 (1-r)* 1 o (ot ,-a-1)
2 (aetl)(a+2)eee(ag+ntl) n

(£).

This proves (2.4).
Finally, for £ < -1 integration by parts gives
n

1
a = E%t£ {1 (t-g)% Pn(t)dt

1
2 en!

(21 (Mg,

1
T (elen®
-1
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S
1
- (_1)2 2;+1 ala 1)-n (a-ntl) [ (e+leh® n(tZ_l)n dt
2 en! -1
Setting t = cos 8, we obtain
n 1 a=-n, 2 n T sin2n+16
LT[ @HEDT - ae = oy 99
-1 0 (lgl+cos 9)
By [14], p. 384 we have
T 2u-1
> 55 9 = B, Yo)F(v,v-ut Yy sut Yy 5a?)
0 (1+2a cos xta”)
with Re u > 0, lal < 1, and F(«,B;v;x) being the Gauss hypergeometric
L function. Let
1
r = — 0 <r<))
lel + /e2-1
thus ! .
lFI = 1—.‘-_&
: 2r °
Setting p=n+1, (p>0) and v = n - a, we have
n 20+1 o= 2(mH1)-1
sin en_ 46 = (2r)n o f sin > :_a a6
0 (lgl+cos )" 0 (142r cos 6+r°)
- (Zr)“-a M F(n—a,-—a - L;n + é;rz)
3 2 2
I‘fn + 5)
ontl
n~a 2 n! 2
(2r) (2n+1) ! ¢n,a(r )
with &  defined in (2.8). (2.6) now follows easgily, | ]
’
. , '
A
\. , - o 1 - o ) T - i
‘r~ v" -
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Remark 1. For & = -1, the expansion

@ _ ,ar 1l . § a(a-l)ese(a-m#l)(2n+l)
(2.12) (1+t) 2 {a+1+ N oty (at2 ) v s (atntD) Pn(t)}

is well known as Neumann-Stieljes series (see [12], pp. 240-244).

Remark 2. Since

I (atntl)

(2.13) a(atl)sss(atn) = T(a)

the above results can also be written in the following form:

1) if ¢ = -1, a > -1, then

(2.14) a = (-1)® KetDIaza) 541,50

T(-a)T (ntat2)

1y [ (1+a)1%sin 7o I(n-a)(2n+1).2°
n

F(atn+2)
2) 1f -1 <¢<1, a> -1, then
. I+ (1-0)**r(ar) 1,,(o+l,~a-1)
(2.15) an T(atmt2) (n + Z)Pn &)
3) 4f £ > -1, then
1
T(atl)T (3 ) _
(2.16) a = (-1) 2 20" (r}
n n 1 n,a
r(-a)2" I'(n + f) ’
- (_l)n—l [§1+z)sin Ta Rjn—a%ﬁ Lo ¢n u(rZ).
2% (n + ) ’

Remark 3. 1In the special case £ = 0, we have (a > -1)

. . — R e e g e~
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j
217y s = o+l CDM@DH %@ ) [2omh (e )
: 2n 2 (a+l)(a+2)ese(at2ntl)
2n a - a
PR JOMIG S et ) MLl Ll &
+
2 (a +%)I‘(- _g_) T(2ntg+2)
(2.18) ar .. = (2n + 3y CL22 @16 @) e [ ey
y 2nt+l 2 (a+2)(at3)eee(at2nt2)
2n+l atl a-1
= -1?@n + H——L0t) A WA 2L
rdimyra - gh Flat2m3)
Proof. 1In fact, for the Jacobi polynomial P£a+1”u‘1)(t) the following
recurgsion formula (see, for example [11], p. 71) holds:
(2.19) {1 e Dy =
P§a+1,-a:-1)(t) = l+a+t f
2 2
(a+l,-a-1) - 2ntl (a+l,~a-1) _n=(a+l) (at+l,-a-1)
Pt (t) ol tPn (t) n(n+l) pn-l ().
In particular,
(2.20) p{@*ima Doy - 1
P§a+1,—a-1)(o) - 140
P(a+1,—a-1)(o) - - n2~(a+1)2 P(a+1,-a-1)(o)
ntl n(n+l) n-1 *
Equations (2.17) and (2.18) are obtained by discussing the cases for n
¢!

N
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even and n odd resp. 8

Remark 4. Equations (2.17) and (2.18) can be combined into one formula:

(Zh rasae (@ 2" rER+ DrSY
(2.21) a = (-1) (+ L
n m 2 T(nFat?)
with
(coa %2, if n 1is odd
o () = /

Isin %2, 1if n 1is even

and [x] Dbeing the largest integer which is not greater than x.

3. ESTIMATES AND ASYMPTOTIC BEHAVIOUR OF THE COEFFICIENTS OF THE LEGENDRE
EXPANSION
In this section we will obtain the asymptotic formulae and some
estimates for the Legendre expansion. First, one can easily prove the

following lemma by using Stirling”s formula.

Lemma 1.

T'(n+a) . L 1 -
3.1) T(at8) nB—a 1+ 0(n)) (n +» =)

where 0(%0 depends on a, B.
We now prove the following theorem which is concerned with the

asymptotic behaviour of the coefficients obtained in Sectiom 2.

Theorem 2. Let a, be the coefficients of the Legendre expansion of

(x—&): and o >--]2;. Then
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1) 1f £ = -1, then
(3.2) a = -nH"? C°(+1) 1+ o(%))
with
Ca) = “”r(m;) sin ma

2) 1f -1 <r <1, then

a+
3.3 s, = Zr@EEYT Yoo + bo-ta + D] + oy}

n

with 6 = arc cos £, and 0(;1‘—) holding uniformly for |¢l <1 -¢, ¢ >0,

4 3) if & < -1, then

y 1
C,(a) at =
-1 "1 2
(3.4) a =~ (1) cla-ch Zrodoy e T
o
a + 7 n
o o
1
‘ L1
‘ +
1‘ : where Cl(a) - E(—l%)%iiﬂ, r= —_1 and ¢ = § >0,
2n lel + /e2a *3
0(1—0) holds uniformly with respect to r € (0,1).

n

Proof. By Lemma 1 and (2.14), (3.2) follows immediately:
for t = ~1

I'(n-a)

n-1 1
a = (-1) Co(a) T(o+a?) (n + 7)

= (D" C(a) (1+0())

2a+1

! ; For -1 < ¢ <1, we use the following asymptotic formula for Jacodi

1= Ear
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polynomial (see [11] p. 196).
3
3.5)  p{%Pcos 0y = cos(No+y) + ofn )
n 1 1
a + - E + ‘é—

— 0 2 ]
/nn(sin -2—) (cos f)

where

N = n+ (gtp+l)/2

1, =
Y (@+3) 35
0 < 8 < =

This formula holds for arbitrary real o and 8

# € [e,ne)], € > 0. Thus, in particular, setting

and holds uniformly for

6 = arc cos ¥, we obtain

1 3\n 3
o cosl (n + 2)a-(a + DE] r
P(a+1, a 1)(5) - 2 2°2 + 0fn 2)
n 3 1
— 0%t 7 0, " "2
Yan(sin 7) (cos 5)

a+1

Y2(sin 8)

H cosf(n + %—)9—((1 + %)%]

3
+0(n2

).

/mn (l-cos e)“ﬂ

Since (I‘E)aﬂ = (1-cos e)“”, by (2.15) we get

L T+a)A-8) " r(ar1) 1, o (a#l,=a-1)
an I"(n+a+2) (n + '2') Pn (E)

1
*3

1 3
cos{(n + Fe-(a + -z-)g]

at+l —~ @
- I(1+a)(1-cos 8) (1+O(l))° 2 (sin 8)
n n

a ——
n 4.

+ o(;§7iq}

(l-cos e)"'ﬂ

-

.t
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a + %

- fras 388" 2 (cosln + D ~ e+ D F + o),

This holds uniformly in 8 € [e,n-¢c].

For £ < -1, (2.16) and Lemma 1 gives (uniformly in %)

rna

2 1
T O (PR,
a + 3
n

a = (-1)“_1 Cl(a)

It remains to analyse & a(rz). The series
»

1
] ® _ a + =
2, (D = 1+ ] (TT (E=Ey ok f o
@ k=l §=1 mH) + k

converges uniformly in r € (0,1) since its general term is dominated by

- L
r(k~a 2)

1 3
T(~a - Eﬁr(k+1) a+ 3

as k+> +o and a ¥+ % being non-integer. (If a + % is an integer, then

®n a (r2) only contains finitely many terms), and because a + % >1 for

1
a ? 3. Thus

1 1
» a + = a +
Mas () = 1+ ] D*( 2 - b L
n,a
o k=1
We shall estimate now the difference
1
+ =
2 2,072
Ry |¢n’a(r ) - (1-°) l.
Since
v.' ’. - - . TE——T e e —-—
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n-g+j-1 (n - %)F(n—a+k) n \® + %
(——1 3 g
=1 ot 3 T(n=a)r(mtkt 3)

-« (140(3))

holds uniformly in k, and since this product decreases as k increases,

1
™ k a +
+4- K
R, |1 ITTEEEDL aendr B | <y
k=l =l ohi 5 k 1 2
where
N k a + 1
- 2 2k
NN A= = (A
= =1 n+i+ 3 k
1

N @ a +
¢ [1- 7 (==l 5|0 Y|
1 mkir s kel

n 2
< Cl(l il G Y,

-

1
R T s s~ R T S

2 k=N+1 | §=1 n+j+-;- k
@ (!+}" 1
< SIS ERIEAS
k=N+1 k 2 a+5
N
1
E)
and C;, C, are independent of n and N. Chooge N = {na+</2]‘ then as
n + o we obtain
3
at+ 5
_ (R 2 _ . 1 =(a+3/2) 1
1- G 1- G+ o)
La¥372 n

]
f
i

-——
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atl/2 1
with o = > 0. We see that 5 and § thave then the same order o(—),
a+3/2 1 2 o°
thus
1
R, 0(—3)
n

which uniforuly holds for r € (0,1). Therefore we can write

2 207 %’ 1
@n’a (r") = (1-r7) + 0(—0)

n

and equation (3.4) follows. -

Remark 5. In the case £ = 0, using (2.21) and Lemma 1 one can easily obtain

=4
2 2 1 1
(3.6) a = D 7 VE e (@ 7 ()
where {
:
cos %g if n 1is odd,
¢,(a) =
sin %l if n 1is even.

We shall now prove the inequalities of a,;, which are important in our

further error analysis.

Theorem 3. If £ < -1 and n>a (a > - %J.

o-a a+ 1
(3.7) la ]l ~ £ ( L+ a-rd 2)
n + L + L
*eTy ¢T3
n n
with the equivalence constant depending only on a and r = ————l—-——.
Izlﬂ‘52-1
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(Here r = 1 is admissible.)

Proof. Since

n-a

a, = DTt Sore (et
n

holds uniformy in r as n + o, 1t suffices to estimate @n a(rz).

Using the integral representation (see [15]}, p. 259):

r(e)

1
F?E:;TF?ET j e? l(l't)c a 1(1‘2t) b dt

0

F(a,bjc;2z) =

for Re c > Re a > 0, [arg(l-z)! < n, we have for n > «

(3.8) 8, (th) = Flna,mw - gin + ird)

1
r'(at+3/2) a1, a+l/2,._ 2 . atl/2
Fan/ore 1, ¢ At A at

Writing (l-rzt)“ﬂ/2 = [(1-t)+(1-1'2)t]a+1/2 and noting that for 0 < a
+ % < 1, the function xa+1/2 is concave. We can use Jensen’s inequality

((16], p. 28) for a,b>» 0, r>s >0
(3.9) (at+bD/T ¢ (a%4pSyl/s,

to obtain for 0 < a + %-< 1, t=1, g=qa*+ %ﬂ

_1 1 1 1
(3.10) DL [(-0)®t h 4 (a-r5H** fy gt ’2]

1 1
e+l 1-00% 2+ (a-cDye® 2
e ¢ )




.
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at 1/2

a+ ((l—t)+(1-r2)t) at 1/
- 2z

2 = [(1-t)*(1-rD)e)

1 1
< a-p)°t 4 (a-rdH*t ) ca+1/2 .

1
For a +Y,> 1 the function X+ gg convex, using once more the Jensen”s

inequality with r = ¢« +1/2 , 8 =1, we get

1 1 1 1
(.11 -0 2 4 =) 23 o aeoea-rD g 2

1 1 1 1
atl Lo+ 1 a-0 2+q-H)* 2t h

2

1 - -2

o+ /2((1 c)+§1 r)ty
-1 1 1 1

- 20~ P (-0 h o (1-r2y** h (ot h 5.

Hence we get by using (3.8) and Lemma 1

T(n+3/2) L ha-l et el .2 atlh atlh
Fen/orea 1, ¢ Gt Tlase + A-ryT e e

r{om+3/2) I'{n-a)r(2a+2)

_2.a+ Yy I (at 1 )T(a*3/2)
N IANCH LG I

T (mta+2) ]

22a+1

I'(1+a) I'(n+3/2) 2yat 1y r(at1pr(nt+3/2)

= Teoraty + (7T T(n-a)T (ota+2)
1
- 0@ ——+ a-H™ 2y a4y
a+1/2
n
where
2a+1
(3.12) D(a) = 2 [(ta)
/n

and the term 0(%) 12 uniform with respect to r, thus we have (using the

notation =)
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2 1

1
(3.13) 8 (r7) =~ - at+th
n¢+ h

+ (1-r2)

and inequality (3.7) follows easily. ((3.7) is valid for t =1

equation (3.2).)

Remark 6. The estimate (3.13) is true under the condition n > «.

consider the case when n < a. In the proof of Theorem 1 we have

ml

b 2(atl)-~1
sin 0 do = 2 n! ® (IZ).

Z)n-a (20+1)!! Tn,a

0 (14+2r cos &+r
For n< a, it follows that

2 0 | @mn o e12{ml

& (r“ ) - — df
n,a 20 TG 421 cos o+c2 )"
I
(2n+1) !t 2 20+1 . 1
> TomyTT [ sin ade 5 .
On the other hand, apparently we have
2 Qo+1) 1! & L a-n , 2(otl)-1 a
f;n,a(r) < 3Emn Io 4 sin 8d8 < 4.

Therefore we have

(3.14) Lo s (e?) < a® 1f n<a
2 n,a
and
il
(3.15) la | « if n< a.
n a“'llz
n

by the

We now
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Theorem 4. If -1 < E < 1, then there is a constant C > 0 independent of

na and £, such that

+
( co? *24

1
(3.16) lagl < { c&™ h

LCn_(2a+1)

0<6 ¢t
-1
An <8<t -2An

-1
n - An <8<

with © = arc cos £, A > 0 fixed (C may depend on 1), and

8 = min(0,n-8).

Proof. For any real a, B and c > 0 fixed,

oy -1
0@ /zo(n /2)’
(3.17) Pia’s)(cos 9) =

Lota™,
(see [11], p. 169). 1In particular,

{ ,—a=3/2 1

) o(n”

"a-l)(cos 8) =

(3.18) plotl
n

to(naﬂ) N

For n/2< 6 < n, we use mn - 6 instead of wu.

and

(3.19)

(see {11}, p. 59), we have

1"

),

USRS PR e

enl<oec /2,

0< 9 < cn_l

ct\-1 <8< wn/2

0<8c<enl.

Because cog 6 = —cos(n-6)
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P§a+1.-a-1)(cos 8) = (-1)° Pi’“'l'“+1)(c08(n-6))

1 -1 -
(n-9)a+ /20(n /2), n - cn ! >8> /2,
(3.20) =

[O(n-a-l), >0 > mw-~ cn-l.

Noticing that for 0< 6 < xn, 1 - =1~ cos 9 = 0(92), (2.15) gives

r(1+a) (1-E)* I (n+1) (n+1/2)Pt(‘a+l, a1 p)

n r'(a+m+2)
+2 - +1, -q-
0(62(1 2n a)Pt(la 1,-a 1)(5)
[ 1 N § -
ot /20(n * /2), cn 1 < 8 < nf2
0225y, 0¢6c<ecn!
Ut ]
(n—e)“”' /20(n @ /2), - cn 1 > 06 > n/2
7
\O(n-(za*‘l)), T>6>mn- crl-1
and (3.16) follows. .

4. ERROR ANALYSIS OF THE BEST LZ-APPROXIMATION OF (x—a): ON [a,b]

We know that the best Lz-apptoximation is given by the partial sum of
Legendre expansion. Let Ep ({a,b],d) denote the error of the best L2—
approximation on [a,b] of the function (x-d):_, (d < b) by polynomials
of degree p. If [a,b] = [-1,1], then we will write simply Ep(&) H
Ep([-l.ll,E,)-

First, we consider the interval [-1,1] and the function is

u(x) = (x-E)}.

4
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Let
o [--]
(4.1) (x~£), ~ nZO a P (x), on [~1,1],
then
(4.2) Ep(z) = un:iﬂ anpn(x)uLz(__l’l)

- 1) ekt
n=p+l n

In the general case of the interval [a,b] and the function

= (x—d): the following relation can be easily obtained:

1
Lemma 2. E,([a,b],d) = het /Zsp(a)
where
d-c¢ atb b~a
2 B ¢ 7 h 7

Now we are going to obtain asymptotic formulae for the error

and EP( [a)b])d)-

Theorem 5. If & = -1, then

2Q+1b 1
(4.3) EP('I) = Co(a) — 3 (1+0(;))
(p+l)
where
r‘(1+a)2|sin nal
Cola) = ~— .

Y20+l 1

Consequently,

Ud(x)

EP(F)

(p » =)
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(1+1/2
(4.4) E,(a,bl,a) = cole) L2t eody)
(p+1)
or
1
at /2
(4.5) E ([a,b]l,a) ££:323—:f
P (pr1) 2™t

with the equivalence constant depending on a but not p.

Proof.
T 2 2 Y
E(-1) = { ] a }
p n=ptl n 2n+l
2Mr(+0)?lsin nal T 140Q/0), U
T { z 4ot3 }
n=p+l n
2" (149)? Isin mal 1 1 1oLy
b — 2a+l (1+0 P
Yaat+2 (ptl)
2 a+1/2
r(1+a)°lsin nal 2 (1-00(—1—))
7/ 22+ (pr1)2otl P
_ b-a e
Noting that h = 5 (4.4) follows readily by using Lemma 2.
Theorem 6. If ¥ < -1, then
2 «a ptl
1-r r 1
(4.6) E () = c, (a) ) (140(=))
p 1 2r (p+1)a+1 G
with
c > 0, r = —L1 ¢ (@ = r(1+a)lsin nal’

— =
I5I+¢52—1 ’n
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and the term 0(13) is uniform with respect to ¢ < -1 - ¢ (e > 0).

P
Consequently,
2 a ptl
@D e el = @™ D) T iy,
(ptl) P
with r=/bd-/?d= b-a for d < a.
/b-d + Ya-d  b+a-2d+2/(b-d)(a-q)
First we need to prove an auxiliary lemma

Lemma 3. If 0<s<1l, o> 0, then

© n N

1 inN
- (4.8) T = A +od)).
n=N n° Ne 1-s N

The term 0(-&%5l is uniform in s € {0,1-e}, e > O.

Proof. Observe that

i N © n n
’ 1 11
o il M R M el L
] (4.9) o < N n=N n n=N+1 N n
o . N N
P s 1 s 1
\ | ° 1-s N° 1-s
; Il
‘ = (1-s) kz 1 - (F%1s"
|
| -1 - (3] 5 ks aes § S
< 8 - S -8 S
| Mt a k=mHl
- - (N—E.T)Gl(s“sml) + g
= gl - (l—s )( ) ] = RN,m'
! -
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S
Choose m = [anI]’ then for N + » we obtain
in —
)
Ry < 1_(1+5)-c+sm’can+_l_+o((1nN)2)
,m N Siml ¥ N
s
fa N
O(T—')
and this term 0(2; N) holds uniformly with respect to 0 < s < 1 - ¢,
e > 0. |
Proof of Theorem 6. Lemma 1 and Lemma 2 give
<]
2 2
EE) = { J al ="
: +
P n=ptl n 2o+l
1 1
r(1+0)sin nal (1-r2)*F R, o= I 5 h 1 <
— a L e zwrll (1 OCY
/n (2r) n=p+l n P {
2,0+ 1y 2(pH1) Y,
1- 1 1
= o (@ L 7 )+ 02N+ o)
(21) 1-r (pH) P P
2 a
l-r T 1
= ¢, (a)( ) (1 + o(=))
2 +1
1 r (p+1)a pc
at+ 1y 1
where o = ¢ (0,1) and the term 0(—6-) is uniform with respect
at3/2
to 0<r<1l-¢g¢, &>0. Considering the general case we obtain
o g-c _ 2d-a2-b
2 h ba °*
r = 1 - b-a o Yb-d - va-d
5 -28+2/TFD (@) +/ad
e | 4vE2-1 bra-2d+2 a /bd + /a-d
}
) o
| 4 -
- , — - , - T e e T pp— A ——— -
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(a < d), and (4.7) easily follows. =

Remark 7. 1If d < a, the singular point is outside of the interval

[a,b]l, then the error Ep([a,b],d) reduces exponentially by the above
theorem, and the rate 1s characterized by the ratio r. This value
depends only on the ratio of the length of the interval and the distance
between the position of the singularity and the interval, but is
independent of a. In Section 5 we will see that this property also holds

for more general functions. In fact, let I|I| =b-a, § =a-4d =

dist. (d,[a,b]), then
= - - 2(a~d)y . _
£ 2= = (1 + S ) (1+2))

where A = T%T' Therefore,

1 1
22T
(el 7{2_1 1+2A+2/A(1+1)

(4.10) r

Thus r 1is geometric invariant of the error.
We are now going to obtain the estimate which 1s uniform with respect

to £ < -1. We need first the following lemma:

Lemma 4. Let 0<s <1, o> 0, N> 2.

1) If 0<s< 1~ %, then

z

n

|~

(4.11) )
rl-

:qlw
Zalw
—
]
®

N

2) 1f 1 - % < 8<1, then
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E sN sN
(4.12) —_— = —
n=N n0+1 Nc

These inequalities hold uniformly in s and N.

Proof. As in the proof of Lemma 3, we have

N ® n
s l_ 5 &
o l-s o
N n=N n —f1-My, N O -
o < m < s[l=(l-s )(N+m) ] =
s 1
o l-s

4

If 0<sg<1c¢<-~- %, then for any m » 1
N o l.,m
< 1 - (— 1-(1 - = .
L Ga® (1m0 = D™

Choose m = N and notice that (1 - %ON + %, we get

s 17 &
o l-8 (4]
0o ¢« e (,-Lag-L,
s 1 29 e
N° 1-8
thus
N ®© n N
L [ La-p i
N'l~-s n=N n 2 N°
and (4.11) follows.
In order to show (4.12), observe that
L] N [ @
I R
n-Nn° a=N n° N-1 ¢°
- e ,
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L S s (N L
o (n-1)° o 'N-1 N°
g N
< 2 s for N > 2.
o\
If 1 > > 1 - 1 h
8 N then
® 5n ® sx
§ > f dx
n=N ncr.-1 N xo.'.1
AL
0 (y+N)crﬂ
sN ® gl-l/N)y 4
> = ﬁ%;
N° To (1+y/N)°
N = Nt

since (1 - 1/N)N «\l; as N + =,

g ¢}

n=N n

This proves (4.12).

N® ‘0 (1+t)°H

1
(1 ﬁ) > 7 for N » 2. Thus

SN © l.-t
<
N0 (1+t)

Theorem 7. Let Ff < -1, p+ 1> a, then

1) 1f o<r2<1-F11~, then
ptl-a 1
(4.13) E(E) = —— T —pqt L a-rH)™ )
P g2 (r1)” at+ 1y
-r (ptl)

(y = x-N)

(t = y/N)
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2) it 1 - ;if < r2 < 1, then
ptl-a 1
(4.14) B (E) r - 1 =+ (1-r2yt
(1) 2 ()2

Inequalities (4.13) and (4.14) hold uniformly in r and p, where

r =

R S
g1 +/E2-1

In the case of general interval [a,b] the inequalities have to be

1
modified by multiplication with a factor (b-a)®" ) .

Proof. The results are the direct consequence of Theorem 3, Lemma 4, and

the simple inequality

Lz+/m < /a5y < /x+73.
)

Remark 8. By Remark 6 these estimates are also valid for p+l < aq.

Now we shall explore the error behavior for the case -1 < ¢ < 1.

we gsee in Theorem 2 the coefficients a, behave in a more complicated

manner, hence we cannot obtain a simple asymptotic formula as in the other

cases, However, we have the following estimates:

Theorem 8. For -1 < £ <1, there exist a constant C > 0, which

depends only on a such that

5_\atlfy 1
c(pﬂ) , 0<e<n—p+1,
(4.15) EP(E) <
1. 2a+l 1
U T e
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where § = min(6,7-8), 6 = arccos ¢£.

For the error in the general interval

[a,b], a <d <b, the right-

ot 1/2
hand side has to be multiplied by (b-a) , and

6 = arccos
Proof. By Theorem 4 we can write
¢ 1
(¢ o
lag| <
c<§)"““1’2

with C = C(a), &§ = min(7-6,9).

2d-a-b
b-a °

- Z.( 6 <
n

0BT~ 2
n

1
Therefore, if 7w - POy < 6 <7, then
o
- 2 2 lp
Ep(g) {n=%+1 n 2n+1}
4
{ ip . = (G2t
< C +
e ptl nha 3 a=2ptl 20+2
1 2o+l
< C(;;T) .
1
The case when 0 < 6 < w = Py follows similarly. |

For the other side of the inequality we have the following result.

Theorem 9. lLet € < 8 <w=-¢, ¢€>0,

such that

(4.16)

the estimate is uniform with respect to

‘r" - "'.

then there is

§
EP(E) > (=)

ptl

]

C=(a,e) >0

1
o+ (8 = min(8,7=8) )

(§ = arccos £).
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Proof. By Theorem 1

(4.17)
coszl(n +-%)6-(a + %);]
n2a+2

1
+ 0(—)} 2

- /2 +1h 5
E(8) = /& r(l4a)(sin 0)%F 72 § 2a+3

n=pt+l

2 1/ - + 3 _‘E 1/

5 Ry © cos” [(m+! )o~(a 3l th 1

= /; I'{l+a)(sin @) 2{ Z gy, } + 0(___a+1).
n=p+1 n p

The term 0(—01'—4;) is uniform with respect to ¢ € le,n-€].

It can be readily seen that (4.16) is proved if we show that

(4.18) max {cos’[(m + PO - (a+ I > s £,
m=n, okl

(X]]

We prove thig by contradiction. Let y = %3 thus sin % =
COS(%-' Y %). If (4.18) 1s not true, then for m = n and m=n+ 1 we

have

c052[(m + %)e ~ (a + %J%} < cosz(% -y ;).

Thus there are Integers k(n) and k(m+l) such that

Ly < v,

- L
v < QI - (a + 5

L

5+ 2k(nH)) < y.

~v < @ o+
Therefore

~y < %-- ((n+1) - k(n)) < y.
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Recause vy < % and y <1 - %, we get

- 8 _ 8a_8 .
kR(nH) - k(n) > 2-y > 2-2 0,

k(otl) = k(n) <

Since k(n+l) - k(n) 1s an integer, we have the desired contradiction. [ ]

Remark 9. It is easy to obtain the estimate for the case E = 0O:

>

Cla)

4.19 Ey(0) =
(4-19) 0 (pr1) 72

where

C(a) = M.

V(2a+1)n
In fact by (3.6) we have
. 2 T 2 1 Y
£,(0) = /;r<1+a>{ P ooy =71
n=p+l n

Ty 2 a2

® (sin = ® (cos 72)° 1
- /%-I‘(lﬂz){ Jj o—2— § —2

2a+2 2a+2

k(B () e By (2D

n

) 1 S 1Y
[Erom b 1 o
= (B3]

T (1+a) L
AT (g yort 1,

[}

At last we consider the problem of the asymptotic behavior of

Ep([a,b],z) as the size II| of the interval approaches zero. For
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simplicity let £ = 0. We have the following theorem:

Theorem 10. Let x > 0 and let {I} be a family of intervals

containing x. Then

E_(1,0) )

. n R . _1
4o xiso pE T P
where

Cla,p) = T(14+a)|sin wal I (ptl-a) .
v WP I8 r(pe3s2)

This limit is uniform with respect to x > ¢, ¢ > O.

Proof. Let x> ¢, € > 0. We may assume that the intervals

in which x 1lies are away from zero:
0 ¢ a ¢ x < b.

First consider the ratio r in the coefficient a, of (2.16).

case we have

11|

r = r(a,b) = —.
atb+2/ab

Noting |a+b+2/ab - 4x| < 3|1], we have

Ilmrga,bz - ll - latbt2/ab - ax| o _3l1)
- ’

thus

lrﬁalbz _1_| < 31
1 4x 4x(4x~3[1])°

Choose [I] < ¢, then the above estimate becomes

I = [a,b]

In this

|
|
l
i
I

-

-
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b) _ 1 31

jtasb) L __ It
4e(be-3¢) 452
hence 1lim I%ETEL - L uniformly hold with respect to x » g, € > 0.
ltls0 'T bx
By (2.16)
a = (-1 F(lfu)sin ne _T(a-q)  n-a i a(rZ)‘
/noe 2% T(n+ 1/ ) ’
2 v _¢C
Recall that @n’a(r } has a majorant serieg z a+3/2 { = (see proof
k=1 k
of Theorem 2), thus 1im & (r2) =1 holds uniformly in n. Therefore
>0 '
we have
I 2§+1 © oy j (I 2:21+‘1 ()
n=p+2 n=p+t2 T(m+l} )
< Cla) rZ(p+2—a), {
l-r
it follows that 1f x> ¢ and |I| 1is small, then
2 [Tly2a+1 ( 2 2 2
Epr (1O (=) { I e gy

n=p+2

I-rz

< C(a)

< C(a,e)|1|2p+5.

Hence
Fp(1,0) m 2a+l 2 2 2

ey 2p+3 (=) * A Tt Fo1 (1,007)
1] 1l

i
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5
2 2(p+l-
(F(1+u)sin Ta F(P+1-a)) 1 1 ( r ) (ptl-a) + 0(|I|2)
- La r(pt3/2) 2a 2p+3 I
Ym 2 2
2
[(l+a)sin ma T'(p+l-a) 1
> Pl p+l-u) s
v 4PN 2043 T(p+3/2) x
Remark 10. For the constant C(a,p) 1in (4.20), we have
1
(4.21) Cla,p) = LU¥a)lsin mal p+11a+1
v2n 4 p
as p + «,
5. THE BEST L2°APPR0XIMATION OF ANALYTIC FUNCTIONS WHICH HAS AN X®-TYPE
SINGULARITY
We now extend our results to a more general case: the class of
analytic function which has an x®-type singularity. Precisely, we will
discuss the function which is analytic as a function of complex variable !
except at one point =xq € R\[a,b], at which it satisfies the following
growth condition for |z-x0| <k, K> O0:
(5.1) lu(z) - uol > K|z~xo|a (a > - %, noninteger).
where
u(xq) if a <O
uo =
0 if o <O.
The case that the singular point x; 1s real and outside of the
interval (a,b] {is most interesting. We can obtain an estimate which has
very similar character as that for the function (x-E):- We have the
following results:
el
]

i S -

o




Theorem 11, Let u € Lz(a,b) satisfy the above condition (5.1), and let
I = [a,b], d = dist.(xo,l)

1 _ b-a
h 2III - 5

Then the error of best Ly—approximation by polynomials of degree p can

be estimated as follows: {f ¢ <r< 1l -g (¢ > 0), then

1 _2a
(5.2) E_a,b] < KC(o)n® 72(LZE" Pl
P 2r
where
- dy o 1
r = r(ﬁ

d, /d d
1 + =+ L@ +=
h d h ( h)
Proof. First of all, we make the linear transformation as before:

x = c+ ht, t €¢[-1,1]

e - b ba
2 2 °

It maps [-1,1] onto [a,b]. Therefore for the function

w(t) = ulctht)

defined on [-1,1], the singular point will be

xo-c
% = ™
and
& = dist.(Eo,[-l,ll)
B o —

N}
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1 d
= E'dist.(xo,[a,b]) =
and the growth condition (5.1) becomes
(5.3) lw(z) = uyl < Kl(ethe) = (cthe)®
a a
K hlz F,Ol .
As usual, we expand w(t) 1int  the Legendre series
w(t) ~ néo a P (t) (t e [-1,1])
then
(5.4) E(-1,1] = | ] al 2%
. , .
P n=p+1 n 2o+l

Without loss of generality, we may assume Xq <a, thus &g < -1 and

Eg = -1 - §.

Since w(t) 1is analytic except at EO ¢ [-1,1], we have

1
20+1
a, = 5 {1 w(t)P_(t)dt
1
- Zgil L[ wo)e?-n™M ™ g
2%t -1
30 1
= __._2‘2‘+1 £ i W™ ey ae
2™t -1
1
2n+l 1 n! w(g) 2.n
= | 5= —2 &} -tH" d
2 2% 01 -1 2ni y (;-t)n+1

—_——— - . B . . .

N
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where y 1is any contour to which t {s interior and ¥4 1is exterior,

and it 1s positively directed.

Now we choose y to be the circle centered at t with a radius

R(t) < It - EOI, then we have the following estimates;

w(g )-uo

1 w(Z) 1
oot ¢ ——22— dzl — ¢ —— dcl
+
27 Y (C-t)n 1 2ni Y (C-t)n+1
< L lz£52:29|ds
2n ¥ Rn+l
21
Kh 1 a
< = =] lg-¢g, 1% ae}
Rn 2 0 0

where [ =t + Reie.

Figure 5.1.

R =

Let F,; be the intersection of the circle to the segment [£g-t]s

and let o = 81 - FO be the distance of EO from the circle, then

1 2n
Mo) = — [ lg - 1% do
2 O

1 n

In
-n

(o> + (2R cos %)2 + 4pR cos> % a/2 o
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If - % < @ <0, the integral is dominated by

and {f « > 0, it is continuous

we can let o » o*

M = lim+ M(p) =
p+0

with

C(a) =

Because

m
1 fa
iz-in {2 cos 2‘

using the fact that for 0 < ¢ <

we obtain

L 2a+1 20
a+l = n T
< C(a) «

so that R ~» Ro,

{2R cos %\a,

in p. 1If we set Ry =t - £43 =R +p,

and obtain

n
[ I2R cos %[a dg = C(a)Rg
-n

[N ]
A

1 n B,a
5;-[ 12 cos 517 de.
-n
2a+1 /2 i
a0 = f (sin 9)" do,
T o

2a+1
e L N

this holds for all a > -1. Therefore we have

(5.5) Iani < 5

a
) kh f&g) (1-t5)" ae
-1 Rn (24




= KC(a)ha g_til. (1 _Ll_..fii__

de.
2n+1

Sl (eH1es)

In Section 2 we obtained

1 2 .n ]
f (1-t ) dt = (Zr)n-a 2 n!

2 (H_H_&)n-a (2n+1)! Cpn,a
with én a defined by (2.8), and

r = 1 = 1

L+8+/(146)2-1 1+6+/5(2+8)

thus (5.5) gives

a n—q n! 2
lanl < KC(a)h¥(2r) ziﬁ:TjTT-@n’a(r )

- KC(a)ha(Téég%%%T)rn-a ®, a(rz).

Now all estimates of &
n,a

for example, we have

1
& (£ = (1-Ht 2 | 0<17,)
n

with 0 <r<1, o>o0, uniformly hold in .

asymptotic equality

(2a)tt / nn

(2n-1)11 ~ 2

it follows that
o 1
la I < kc(on® /o " %1-2)2t 2

At last, we obtain for e ¢ r¢ 1 - e (e > 0):;

]

(r2

obtained in Section 3 can be applied here,

Since we also have the
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2 T 2 2
E [-1,1]° = Y a
p n=p+l n 2n+l
< V [Kc(a)]z hZa(l_r2)23*1r2(n-a)

_2a 2
= [Re(ow" (Y P

and

13 b /7h e [-1,1
pla. 1 p[ )

1 _2a
< Ke(@m™ 72 (1_2_‘5_\ L )

/

Remark 11. As in the case discussed in previous sections, {f Xy is an

endpoint, then

ha+1é
E (a,b] ¢ ¢ —F5—r
' 2a+l
P (p+1)“*
and if %y is interior to ({a,b], then
1
+
E _[a,b] < of " "
P’ ptl )

Finally, the case when x; 1is not real also gives an exponential rate of

convergence:

+1
£ [a,b] < ch® 2P,

P
Here r 1is determined as follows: let pg be the sum of semi-axes of
the ellipse np which has the foci at + 1 and passes through the point

0
b
Fo = = with c-E*z—-, h o= 22,

XA —C

then

"




1 2
b = 3 llsg L1+ leg + 11 + /ey -1l + leg + 117 - 4}

and %— <r <1, This result follows easily from Theorem 9.1.1, of [ll],
0
p. 245.

6. ERROR ANALYSIS OF p-VERSION OF FEM FOR THE MODEL PROBLEM

Since the error of the finite element solution u of the model

P

problem is exactly the error of the best Lz—approximatton of u by
plecewise polynomials (see Section 1), the results of previous sections
give the error analysis for the p version of FEM with only one

element. One only needs to notice that u“(x) = a(x-E):-l - const. so
that the error estimates will be obtained by replacing a 1in the previous
results by a-1, and p by p-1, and taking into account the change of
length of the interval. Thus the following results follow easily from

Theorem 5, 6, 7, 8 and 9.

Theorem 12. Let Ep(i) be the error of the finite element solution of
the model problem (1.1) when using only one element 1 = [0,1] {tself.

1
(£ 1is the position of the singularity.) Then for a > 3» one has

1) if £ = 0, then

1 1
Ep(o) = Cyla) ;EE:T 1+ 0(;9) (p » =)

ar(a)zlsin nal

n/2a~1

with CO(G) -

2) 1f £ < 0, then

1‘!'2]0-1 E_p_
a

1
EE) = C(a)(T5 (1 +0(=))
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V1-%2 - /:i, c () = aF(a)I:in nal and the term O(lg)
JIE + /7€ /r2t P

1s uniform with respect to £ < -¢, (&g > 0).

[

where o >0, r =

—

And we have the estimation:

2

1f 0< r“ <1 - %, then

/1—r2 P

1f 1-%<r2<1, then

1 9 a-lb

ptl-a
r + (1-r") ]

[

E (§) =
P 0-1/2 pa-lfz

| 4

where equivalency constants depend only on «a.

3) 1f 0 < £ < 1, then there exists a constant C > 0 depending

only on a such that

_1/
’ 8.8 172 1
| C(= 0<H - =
(P) P
E (§) <
4 1 2a-1 1
C(— T -—=—<8<T
(P) p

where § = min(6,7-8), 6 = arccos(2£{-1).
On the other hand, if € < 6 < m=-e, € > 0, then there 1s a

constant C = C(a,e) > 0 such that

5 a= 15
EP(E) > C(;) . e

Consider now the p version with more than one intervals and with the

singularity of the solution located in any of the nodal points of the

N
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mesh. As p + » the rate of convergence will be the same as in the

1

2a-l" If £ 1is in the interior of any mesh
p

case £ =0, 1i.e.,
interval, then the rate of convergence for p » «» will be the same as

when 0 < g <1 and it is half in the exponent of the case above, i.e.

l/pm—l/2 . However, these rates of convergence appear only if p 1is

large. For samll p, the relation of the error in dependence on the

number of total degrees of freedom of the finite element space has in

general two phases. If the mesh is properly designed (in general, there

is sufficiently strong refinment around the singularity), then the rate of

error reduction will be exponential in the beginning phase. When p is

large enough, this rate becomes algebraic. If the refinement of the mesh

is not strong enough (for example, the uniform mesh), then the exponential

part of the error reduction cannot even appear. If £ 1lies outside of

the interval then (also for one element mesh) only the exponential phase

appears. Typically, when £ 1lies inside the interval the graph of the |
error in dependence on N 1in double logarithmic scale is S-shaped

(actually reflected S). The first part is the exponential phase and the

second the algebraic one (see Fig. 7.2). 1In practice we would like to

achieve desired accuracy in the exponential phase. Using Section 5 the

results can be extended to the general case of a function with a

singularity of type x%,

7. NUMERICAL RESULTS

In the previous section we have shown various estimates characterizing
the error behavior of the p-version of FEM. Here we will numerically
analyze the accuracy of the estimates, the range of asymptotic validity,

etc. The error in this chapter is measured in the energy norm. As said

1
1
|
1
|
i
|
i
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. in Section 6, the estimates are obtained from the estimates of the error
in Ly-norm by replacing o by a-l and p by p-l.
In the tables, p 1s the polynomial degree of the approximation, and

the error of the finite element solution (when only one element {s used)

A

is denoted by Ep = Ep(a,&). Let Ep = E?(G,E) be the error given by

certain asymptotic formulae, Ez = Ei(a,i) be given by some some

estimates. We will compute the ratios

E E
RA = —E’ RB = 2
P A P gB

P p

o]

These ratios will be called numerical constants which reflect the quality

of the estimates, the range of the asymptotic validity, etc.
In the case £ = 0, the asymptotic formula is (cf. Theorem 12)

A Co (@)

. E =
1 7.1 p p2a-1

where

ar(a)zlsin nal
/' 2a-1

Co(a) =

and we have

The numerical results are shown by Table 7.1 for a = 0.7 and a =

3.5. We can see that for a small a (the singulairty is strong) formula
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TABLE 7.1
£ =0,
a = 0.7 a= 3,5
P

A A

R

EP RP EP P
1 4.743 E-1 0.9877 1.021 0.2032
2 3.627 E-1 0.9967 3.402 E-1 4,335
3 3.090 E-1 0.9985 3,093 E-2 4,488
4 2.756 E-1 0.9992 2.379 E-3 1.940
5 2.522 E-1 0.9995 4,760 E~4 1.480
6 2.344 E-1 0.9996 1.400 E-4 1.300
7 2.204 E-1 0.9997 5.154 E-5 1.208
8 2,090 E-1 0.9998 2,210 E-5 1.153
9 1.994 E~-1 0.9998 1.057 E-5 1.118
10 1.912 E-1 0.9999 5.495 E-6 1.094
11 1.840 E-1 0.9999 3.053 E-6 1.077
12 1.777 E~-1 0.9999 1.790 E-6 1.064
13 1.722 E-1 1.000 8.999 E-~7 1.054
14 1.671 E-1 1.000 6.978 E-7 1.046
15 1.626 E-1 1.000 4.585 E-7 1.040

(7.1) gives very good results even for small p.

asymptotic range is quite large. For a

or the function is "smoother™), the asymptotic range shift to large
but for small p the accuracy of the asymptotic formula is still quite

good. It is also seen that there is a big gain of the error reduction

when p 1ncreases from 1 to

In the case & < 0, the error reduces exponentially.

2, 3, especially for large a.

we have the following asymptotic formula:

2 a-l _p
A l-r r
(7.2) Ep Cl(a)(—zt—-) -
P
where
¢, (@) aPSaleii nal
/T

Thus in this case the

large (the singularity 1is weak

By Theorem 12

Ps

'
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and

here

In this case we also have the estimates

(C,(a) _ptl-a a-1h
2 ra [Dsa! + (1‘1’2) ]
1-r2 P pa-lb
if 0K rz <1 - %
B
(7.3) Ep <
ptl-a a1
C,(a) e (l-rz) ]
-1y a1k
P |
L £ 1-L¢:?

with

C,p(a) = Cl(a)/2°‘_1

Zza-lf(a)

n

D(a) =

Here, D(a) 1is the number obtained in proving Theorem 3. (See (3.12).
Cz(a) is chosen so that as p » », the first formula asymptotically
agrees with (7,2), therefore we also have lim RE = 1. It {s shown in
Table 7.2(a)~7.2(c) that the aeymptotic behE;ZOt is not too simple (it

will be described later). Note the two parts of the formula EE coincide
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1
at r2 =1 - > For r =1 (i.e. £ =0), the formulae (7.2) and (7.3)

differ. In fact, if we write (7.2) by E:(O), then

E2(0)
—i—— = J4a-2.
ET(0)
P
The ratio Rz in this case is bounded above and below by constants which
depends on a.

It can be seen in Table 7.2 that the asymptotic range of (7.2) depends
on a and §. When o increases or § gets close to the approximation
interval [0,1], the asymptotics are shifter toward large p. If a |is
large and £ 1s close to -1, E: is large, while Eg gives good

estimation in the sense that for large range of both a and £ the ratio

Rg is quite stable.

TABLE 7.2(a)
g = -0.0005 (r = 0.9563)

a = 0.7 a = 3,5
P

A B A B

EP RP RP EP RP RP
1 4,192 E-1 0,4780 0.6334 1.022 { 3078. 0.0549

2 2.945 E-1 0.5705 0.5806 3.404 E-1 | 12130. 1.224

3 2.323 E-1 0.6251 0.5440 3.091 E-2 ' 4761. 1.324
4 1.928 E-1 0.6636 0.5162 . 2,373 E-3 1047. 0.5972
5 1.647 E-1 0.6929 0.4939 ' 4,738 E-4 476 .9 0.4753
6 1.433 E-1 0.7165 0.4752 1.390 E-4 276.9 0.4352
7 1.268 E~1 0.7359 0.4593 . 5.106 E-5 182.4 0.4212
8 1.126 E~-1 | 0.7524 0.4453 2.180 E=5 130.0 0.4187
9 1.010 E~1 i 0.7666 0.4329 . 1.038 E-5 97.80 0.4224
10 9.116 E-2 ; 0.7791 0.4218 5.373 E~-6 76.56 i 0.4297
" - . -

D -
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TABLE 7.2(b)

£ = ~0.05 (r = 0,6417)

a=0,7 a = 3.5
p
A B A B
Ep Rp Rp Ep Rp Rp
1 2.190 E-1 0.7478 0.4700 1.153 15.40 0.0340
2 9.671 E-2 0.8362 0.4321 3.580 E-1 | 84.33 1.129
3 5.063 E-2 0.8765 0.4706 2.912 E-2 | 44.18 1.934
4 2.640 E-2 0.9003 0.4962 1.937 E-3 | 12.53 1.227
5 1.475 E-2 0.9162 0.5150 3.254 E-4 7.165 1.253
6 8.434 E-3 0.9276 0.5298 7.844 E-5 5.097 1.366
7 4.904 E-3 0.9362 0.5417 2.322 E-5 4.031 1.482
‘g 2.886 E-3 0.9429 0.5518 7.853 E-6 3.390 1.576
9 1.716 E-3 0.9484 0.5604 2.920 E-6 2.966 1.640
10 1.027 E-3 0.9528 0.5678 1.165 E-6 |  2.666 1.677
TABLE 7.2(c)
£ =-1 (r=0,1716)
a = 0.7 a = 3.5
p
A B A B
Ep Rp Rp Ep Rp l Rp
1 3.729 E-2 0.8224 0.4233 4.716 2.491 ’ 0.0191
2 4,302 E-3 0.8982 0.4865 5.981 E-1 20.83 1.197
i3 5.744 E-4 0.9284 0.5215 . 1.696 E-2 14.23 | 2.428
w0 8.196 E-5 0.9447 0.5440 3.619 E-4 4.842 | 1.587
s 1.216 E-5 0.9550 0.5602 1.855 E-5 3.160 | 1.542
6 1.851 E-6 0.9620 0.5728 1.323 E-6 2.486 . 1.546
P7 2.865 E-7 | 0.9671 0.5831 1.130 E-7 2.127 1.539
"8 4,495 E-8 | 0.9710 0.5916 1.085 E-8 1.896 1.509
9 7.124 E-9 0.9738 0.5987 1.135 E-9 1.746 1.480
10 1.124 E-9 | 0.9639 0.5974 1.264 E~10 1.638 1.448
L M 4
" ’ e e e e e e A——— —
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For the case 0 < § < 1, we use the estimate:

1
(( G_EZJu— 12
p

0<H <=~ 1
P

(7.4) E_ =

-
p2(1—1

~

T - l-( 8 <
p

where 6 = arc cos £. In this case we cannot have an accurate asymptotic
formula as for & < O. The numerical constant Rs = Ep/Es no longer
shows a monotonic behaviour. Tables 7.3(a)(b) are made for a = .7 and
3.5 and & ranging from 0.0005 to .75. The numerical results show
that the ratio Rg is stable (it is bounded above and below by constants
which depend on a). For small a, the range of Rg is quite small
(this means that Eg gives very good estimation). When a 1is large,
this estimate is not so good but we still have the right rate of
convergence. An interesting fact is that the error Eg for fixed p 1is

nearly symmetric in £ (about ¢£ = 1& ), yet the function (x-&): is

not symmetric. We also see that the error (for fixed p) has the maximum

at £ = 1@ (the middle of the interval). It tends to be smaller when
f moves to the endpoint of the interval.

The graph of the error function Ep(u,g) for a = 1.5 {is shown 1in
Figure 7.1. It is very clear that if the singularity is located outside
of the interval of approximation, then the rate of coanvergence is
remarkably increased. This fact 1s important in designing a right mesh
for the FEM. It will be shown 1in the second part of the paper that a
strong refinement around the singularity will greatly reduce the error for

the same number of degrees of freedom.

N
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TABLE 7.3(a)

a = 0.7,
¥ = 0.05 | £ = 0,005 £ = 0,0005
H - t']
! B : B B !
Ep R ‘ Ep ' Rp Ep Rp
I .
1 5.191 E-1 0.8518 ; 4,791 E-1 0.7862 } 4,748 E-1 0.7792
2 4,804 E-1 1.040 1 3,779 E-1 0.8184 | 3.643 E-1 0.7888
3 4.802 E-1 1.159  ; 3.373 E-1 0.8589 | 13.120 g-1 0.7946
4 | 4.726 E-1 1.208 | 3.182 E-1 0.9091 | 2.804 E-1 0.8011
5 1 4,517 E-1 1.208 3.091 E-1 0.9658 . 2.589 E-1 0.8089 |
6 4,239 E-1 1.175 3.053 E-1 ' 1.026 i 2.435 E-1 . 0.8182 !
7 3.987 E-1 1.114 3,040 E-1 | 1.087 | 2.319 E-1 0.8288 !
8 3.835 E-1 1.126 3.038 E~1 1.118 | 2,230 E-1 | 0.8407
9 | 3.786 -1 | 1.138 3,038 E-1 | 1.145 2.161 E-1 | 0.8539
10 3.784 E-1 1.162 3.034 E-1 1.168 2.106 E-1 0.8681
T
£ = 0.25 F = 0.5 F = 0.75
! B B ! I B
; : Ep R Ep | Rp ’ Ep id
i1 1 6508 E-1 | 1.099 ! 7.410 E-1 | 1.216 | 7.483 E-1 | 1.264
P2 1 6,289 E-1 1.220 ' 5,973 E-1 ¢ 1.126 5.877 E-1 1.140
'3 ¢ 5,399 E-1 1.136 | 5.773 E-1 ¢ 1,180 °‘ 5.372 E-1 1.130
"4 . 5.130 E-1 1.143 | 5,271 E-1 ' 1,141 | 5.341 E-1 1.190
"5 | 5.082 E-1 | 1.184 ! 5,174 E-1 ° 1.171 | 4.929 E-1 1.149
16 | 4.742 E-1 | 1.146 | 4.884 E-1 | 1.147 . 4.735 E-1 1.144
17 | 4.613 E-1 1.150 4.821 E-1 l 1.168 | 4.721 E-1 1.177
g 4.588 E-1 1.175 4,622 E-1 1.149 4,499 E-1 1.152
9 4.386 E-1 1.150 4,571 E-1 1.166 4.384 E-1 1.149
10 4,305 E-1 1.152 4,426 E-1 1.151 4.375 E-1 1.171
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TABLE 7.3(b)

a = 3.5
£ = 0,005 F = 0.0005
Il

B B

Ep Rp Ep E Rp
1 8.960 2.048 1.008 1.019 2.330
2 3.211 46,97 3.384 E-1 49,50 3.400 E-1 49,74
3 3.334 24.84 3.114 E=2 51.88 3.095 E-2 51.57
4 3.159 5.580 2.436 E-3 22.81 2.424 E-3 22.33
5 8.295 2.862 4,983 E-4 17.80 4,778 E-4 17.07
6 3.238 1.930 1.508 E-~4 16.08 1.410 E-4 15.03
7 1.501 1.421 5.749 E-5 15.46 5.211 E-5 14.01
8 7.319 1.034 2.566 E~5 10.70 2.241 E-5 13.43
9 3.567 0.7170 1.287 E-5 1.076 E-5 13.07
10 1.984 0.5474 7.070 E-6 5.622 E-6 12.85

¥ = 0.5 F = 0,75
B B
Ep Rp Ep Ep R

1 4.795 1.687 1.552 E-1 0.3548 2.091 E-2 0.0736
2 2.279 6.414 9.953 E-2 1.820 1.711 E-2 0.4817

3 4,760 4,525 4,289 E-2 2.647 1.202 E-2 1.142

4 5.351 1.205 8.816 E-3 1.290 6.987 E-3 1.574

5 1.593 0.7009 3.630 E-3 1.037 3.097 E-3 1.362
6 1.513 1.150 1.897 E-3 0.9364 9.555 E-4 0.7263
7 8.019 0.9679 1.128 E-3 0.8843 6.864 E-4 0.8283

8 3.633 0.6546 7.293 E-4 0.8534 5.736 E-4 1.033
9 3.599 0.9233 5.001 E-4 0.8334 2.932 E-4 0.7521
10 2.551 0.8975 3.901 E-4 0.8196 2,127 E-4 0.7485
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Figure 7.1. p-version with one element (a = 1.5).

So far we discussed the p-version with one element only (m = 1).

Let us now address briefly the case when the number of elements m > 2.
We assume that the solution is u(x) = x* -x ({.e., the case £ = 0).
and 7.2(b) show the cases when a = 0,7 and a = l.1,

Figures 7.2(a)

respectively. 1In the figures,

geometric progression with a ratio q = 0.15. The dotted curve is the

error for the nearly optimal mesh-degree combination (cf. Part 2). In

Figure 7.3 we compare the cases in p-version for uniform mesh and

geometric mesh (a = 0.7).

m=2~ 10, and the meshes are made bv
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Figure 7.2(a). (a = 0.7).
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Figure 7.2(b). (a = 1.1).
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Figure 7.3 f(a = 0.7).

a: uniform mesh (m = 50);
b: uniform mesh (m = 100)
c: geometric mesh (m = 20, q = 0.15).

It is clearly seen that the p-version has often two phases. The
first phase (when p 1s small) has approximately an exponential rate.
The second phase (when p 1s large) tends to be algebraic. This figure
will be called an S-curve (actually, it is a reflected S). For the
geometric meshes, whan having the same number of elements, if q s
small, the range of exponential phase 13 enlarged. However, it does not
mean that the smaller q 1is the better the result, since the curve is
also shifted up. Roughly speaking, when a 1s small or the required
accuracy is high, it is better to use smaller q. When a 1s large or

required accuracy {s low, large q 1is preferable. But the difference

N
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for q = 0.1 ~ 0.3 1{is not too large if the required accuracy is not too
high (say 12 ~ 5%).

Secondly, for a small (solution is highly unsmooth) one needs more
intervals than in the case of a large (solution smooth). For example,
when a = 0.7, wusing m =2 or m = 5 one even cannot obtain the
accuraacy of 5Z in practice since the polynomial degree cannot go too high
(say, p = 10). Figures 7.2(a), (b) show all these curves lie above the
curve for the optimal h-p extension (see also Part 2). Likely there is
an envelope for these p-version curves, and this envelope lies above the
optimal h~p extension curve.

It 1s very clear that the mesh-design 1s crucial to achieve a good
rate of convergence. If the singularity is present, then the uniform mesh
with few elements is not acceptable. Figure 7.3 shows that the uniform
mesh performs badly. There 18 no "exponential” phase at all and for o =
0.7 4t cannot get even 5% accuracy for hundreds of times many degrees of
freedom comparing with the case when a geometric mesh (q = 0.15, m =
20) was used.

In practice (see [2]) one would like to achieve the required accuracy
at the end of the "exponential” phase. It is more advantageous to
overrefine mesh than to underrefine it. Since the p-version is using
hierarchical elements [2], as long as a mesh is given the increase of N
is not too expensive, while for unsmooth solutions a strongly refined mesh

is very important .. get the desired accuracy.
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